
MOTION COMPENSATED PREDICTION USING
PARTIAL MESH GENERATION

Han Huanga,b,c, John W. Woodsb and Yao Zhaoa,c

aInstitute of Information Science, Beijing Jiaotong University, Beijing, China
bECSE Department Rensselaer Polytechnic Institute, Troy, NY, USA

cBeijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China

ABSTRACT

In this paper, a new motion modeling method is introduced.
We employ the popular quadtree structure to divide an image
frame into variable size blocks. Each block is considered as
an independent deformable mesh cell, and can be connected
to causal neighbor cells to produce partial meshes. The mo-
tion model in each mesh cell is adaptively selected by mini-
mizing a Lagrangian cost. We evaluate the proposed method
by motion compensated prediction and coding. Preliminary
experimental results show its potential advantages.

Index Terms— Polynomial motion, affine, mesh, merg-
ing, motion compensation, quadtree

1. INTRODUCTION

Polynomial motion models have advantages over transla-
tional motion models in capturing more complex motion. The
mesh-based approach [1] produces a continuous motion field,
thus visually more pleasing motion-compensated prediction
frames. However, the non-causal spatial dependence among
the control points makes it difficult for rate-distortion opti-
mization. Also, it cannot capture the motion discontinuity
at the boundary of moving objects. Alternatively, a poly-
nomial motion model can be adopted within the traditional
block matching framework, with the penalty of increased mo-
tion parameters. In [2], an orthogonalization scheme along
with motion assisted merging and motion-model adaptation
was developed to efficiently code the polynomial parame-
ters. Mathew and Taubman investigated a polynomial motion
model within the framework of quadtree motion modeling
with leaf merging [3, 4]. In the aforementioned non-mesh
based approaches, motion is represented by estimated poly-
nomial parameters instead of motion vectors at control points.

In this paper, a similar quadtree decomposition and
bottom-up pruning framework is adopted. Each node is con-
sidered as an independent mesh cell. Various motion modes
are defined according to different relations among the motion
vectors at the control points. For each mesh cell, the best
motion model is selected by a rate-distortion optimization.
Furthermore, the mesh cell is allowed to connect to its causal

neighbors, resulting in a partial mesh with a continuous mo-
tion field. The connection scheme is similar to the merging
technique of [3, 4]. However, connection of mesh cells dis-
cussed in this paper is applied on control points, which does
not force a single motion model on the entire merged region.
In other words, each cell may still undergo a separate motion
after connection, providing more flexibility.

2. MOTION MODELING

The quadtree structure is adopted to recursively divide a
motion block into smaller blocks. Motion in each block is
modeled by an independent mesh cell with 4 control points
at the corners. Consider a mesh cell with size s × s. Let
(xi, yi) and ~vi = (vxi , vyi) be the coordinate and motion vec-
tor of control point i, i = 1, 2, 3, 4. Since the affine motion
model is chosen in this paper, each mesh cell is treated as
a pair of triangles. The partition can be either LU or UL as
shown in Fig. 1. The corresponding motion modes are named
LU AFFINE and UL AFFINE respectively. Note that the two
triangles share two control points. Let (x, y) be a point in
the current frame, and (x′, y′) be the corresponding point in
a reference frame. The affine transform is described as{

x′ = ax+ by + e
y′ = cx+ dy + f

. (1)

Here a, b, c, d, e and f are the affine parameters. Define the
motion at (x, y) as (vx, vy) = (x−x′, y− y′), it then follows
that {

vx = (1− a)x− by − e
vy = (1− c)x− dy − f

. (2)

Motion-compensated prediction is seen as Ît(x, y) = Ĩt−1(x′, y′),
where Ît is the predicted frame and Ĩt−1 is the interpolated
reference frame using cubic convolution interpolation [5].

Transform the coordinate system by setting (x1, y1) =
(0, 0). Substituting (x′, y′) and (x, y) with (x′i, y

′
i) and

(xi, yi), i = 1, 3, 4 in equation (1) and solving the result-
ing equations, we can derive the affine transform parameters
for (x, y) in the lower triangle of the LU partition.

s

[
a b e
c d f

]
=

[
(vx3 − vx4) + s vx1 − vx3 −vx1s
(vy3 − vy4) + s vy1 − vy3 −vy1s

]
.

(3)

2011 18th IEEE International Conference on Image Processing

978-1-4577-1303-3/11/$26.00 ©2011 IEEE 1677

(a) LU partition (b) UL partition

Fig. 1: Mesh Cells

Then, by equation (2), we have{
svx = (s− y)vx1 + (y − x)vx3 + xvx4

svy = (s− y)vy1 + (y − x)vy3 + xvy4
. (4)

Similarly, using control points 1, 2, and 4 we can obtain{
svx = (s− x)vx1 + (x− y)vx2 + yvx4

svy = (s− x)vy1 + (x− y)vy2 + yvy4
, (5)

for (x, y) in the upper triangle. Through the same derivation,
similar equations follow for the UL partition. These equations
show the affine motion as a linear interpolation between the
motion vectors at control points.

Define ~v0 as the translational motion of a mesh cell.
It’s used as the search center for ~vi, i.e. ~vi = ~v0 + ∆~vi.
The motion vectors that need to be transmitted are: ~v0 and
∆~vi, i = 1, 2, 3, 4. Obviously, transmitting five motion vec-
tors, in place of the one needed for block matching, will
increase the motion rate dramatically. And it’s not necessary
to use higher order motion for every block. So we define 3
additional motion modes as follows.

• Horizontal Bilinear: set ~v3 = ~v1 and ~v4 = ~v2. This mo-
tion field is uniform within each column of the block,
and is bilinearly interpolated in the horizontal direction.
The motion vectors that need to be transmitted are: ~v0,
∆~v1 and ∆~v2. We refer to this mode as HOR.

• Vertical Bilinear: set ~v2 = ~v1 and ~v4 = ~v3. This mo-
tion field is uniform within each row of the block, and
is bilinearly interpolated in the vertical direction. The
motion vectors that need to be transmitted are: ~v0, ∆~v1
and ∆~v3. We refer to this mode as VER.

• Translational: set ~vi = ~v0, i = 1, 2, 3, 4. This motion
field within the block is uniform, i.e. translational mo-
tion as in conventional block matching. Only ~v0 needs
to be transmitted. We refer to this mode as TRANS.

Note that HOR, VER and TRANS modes are special cases of
affine motion.

3. MESH CELL CONNECTION

The connection of mesh cells is actually merging of adjacent
control points. We want to favor the advantages of a mesh

based approach by generating a partial mesh covering an ar-
bitrary region, and at the same time further reduce the number
of motion vectors. A neighbor cell is said to be valid for con-
nection if it contains the boundary edge of the current cell.
We illustrate this in Fig. 2, where A is valid for connection
in (a) and (b) but not in case (c). There are four possible
connections: left connected, up connected, left up connected
and un connected. By left up connected we mean that the
current mesh cell is connected to both its left and upper neigh-
bors. As shown in Fig. 2d, B is connected to C, A is also
connected to C, A and B are connected by one control point,
then X is able to connected to both A and B.

When the current cell X is connected to its neighbors, the
motion vectors at the connected control points and ~v0 are in-
ferred by those of its neighbors. For example, in the case of
Fig. 2a, ~vX0 = ~vA0 , ~v

X
1 = ~vA2 , ~v

X
3 = ~vA4 . In Fig. 2b when

two mesh cells have different sizes, ~vX3 is obtained by bilin-
ear interpolation of ~vA2 and ~vA4 . Setting ~vX0 = ~vA0 is based
on the intuition that the connected mesh cells may belong to
the same object, and thus have a similar translational motion.
For simplicity, no previous modes are changed when a con-
nection is made. So HOR, VER and TRANS mesh cells may
be connected to prior neighbors that do not honor their con-
straints on ~vi. Then the constraints defined in the 3 modes
are only applied on the opposite face. Take Fig. 2a for ex-
ample, if X is connected to A, then HOR means only setting
~vX4 = ~vX2 and not changing ~vX1 and ~vX3 which are inferred
by ~vA2 and ~vA4 . Then since affine motion is used, X must be
split, either LU or UL. In this case, LU partition is always
assumed in our present implementation. Note that all motion
modes are equivalent to linear interpolation between control
points. The resulting motion field is then continuous across
the boundary of two connected mesh cells, even if they have
different modes.

4. ESTIMATION AND CODING OF MOTION
PARAMETERS

Motion parameter estimation is conducted within the quadtree
decomposition and bottom-up pruning procedure [6]. Let J0
be the Lagrangian cost of a mesh cell, and Jk, k = 1, 2, 3, 4 be
the costs of its four child mesh cells. The children are pruned
if J0 ≤

∑4
k=1 Jk. In the rest of this section, we will describe

the procedure for a given mesh cell.
Let D be the prediction error and R be the estimated cod-

ing bits. Denote Φ as the set of connection options described
in Section 3 and Ψ as the set of motion modes described in
Section 2. Let c ∈ Φ and m ∈ Ψ denote connection option
and motion mode. Then we exhaustively search in the space
(Φ×Ψ) to find an optimal (c∗,m∗) with a minimum J∗. For
each (c, m), J(c,m) is obtained by

arg min
v
J(c,m, v) = D(c,m, v) + λR(c,m, v) (6)

where λ is a Lagrange multiplier, v ⊂ {~v0,∆~vi, i = 1, . . . , 4}

2011 18th IEEE International Conference on Image Processing

1678

(a) (b)

(c) (d)

Fig. 2: Connection examples

is a set of free motion vectors 1 depending on (c,m). Search-
ing on v is described as follows.

1. If ~v0 is a free motion vector, find ~v0 by minimizing
J(~v0) = D(~v0) + λR(~v0 − ~vp). where ~vp is a median
predictor, obtained from ~v0 of neighbor mesh cells.
Here we may employ a SKIP mode for ~v0 when c is
un connected. If SKIP is chosen, then ~v0 = ~vp and
R(~v0 − ~vp) = 0.

2. For i = 1, 2, 3, 4, if ~vi is free motion vector, find ∆~vi
by minimizing J(∆~vi) = D(~v0 + ∆~vi) + λR(∆~vi)
while keeping other motion vectors fixed.

3. If there is more than one free control point2, step 2 is
iterated until no motion vectors are changed or a prede-
fined maximum iteration number 3 is achieved.

We use a binary flag, denoted as connected sign, to indi-
cate whether the current cell is connected or not, and a two-bit
codeword, denoted as connection direction, is used to repre-
sent left connected, up connected or left up connected. Let
n be the number of valid neighbor cells for connection. If
n > 0, then connected sign is signaled to the decoder. If n >
1 and a connection decision is made, connection direction is
further sent. For coding of mode selection, we also use a
binary flag to indicate whether the mode is TRANS. If not,
another two-bit codeword is used for representing the other 4
modes. In (6), c is denoted by 1 bit for connected sign and
2 bits for connection direction. The mode m is denoted by 1

1a motion vector that is not inferred by a neighbor cell or constrained by
the definition of the motion mode

2control point with free motion vector

bit for TRANS mode and 2 additional bits for the other modes.
An exp-Golomb coder is used to estimate the coding rate of
v in the optimization, but in the actual coding, c and m are
coded by binary arithmetic coding and v is coded by the en-
tropy coding extension of CABAC presented in [7].

5. EXPERIMENTAL RESULTS

We evaluate the proposed method by motion-compensated
predictive or hybrid coding. We will refer to the proposed
method as Progressive Mesh Generation(ProMesh), and the
method without connection as Generalized Variable Size
Block Matching(GVSBM). We also implement Variable Size
Block Matching(VSBM), using the same quadtree setting and
coding procedure, for comparison purposes. The original ref-
erence (previous) frame is used to predict the current frame.
The block size is varied from 32 × 32 to 4 × 4. The search
range is [−31, 31] for ~v0, and [−3, 3] for ∆~vi, i = 1, 2, 3, 4.
The motion vectors have quarter-pixel accuracy. Plots of mo-
tion rate versus prediction PSNR were obtained by varying
the λ value, for the first 100 frames of FOREMAN and 150
frames of BUS, and are shown in Figs. 3 and 4, respectively.
Both test clips are CIF @ 30 fps. In the range of middle to
high bitrate, GVSBM outperforms VSBM by 0.3∼0.6 dB for
FOREMAN and 0.3∼ 1 dB for BUS. The ProMesh method
further improves the performance by 0.2∼ 0.3 dB. There’s
little gain at low bitrates, since the overhead of transmit-
ting more motion information becomes significant. The
general spt no merge and general spt from Fig. 2 of [3] are
added in Fig. 3 as reference. The reader should note that SKIP
mode was not implemented in [3], and this may account for
some of the difference. But our experiments show that the
SKIP mode only improves performance by about 0.1 dB for
any of the three methods tested here. For actual coding, we
code the first frame as I frame and all the other frames as P
frames. The EZBC image coder [8] is used to code all frames.
Both luma and chroma are coded and counted in the bitrate.
No intra-prediction, overlapped block motion compensation
or de-blocking filter is used. The bitrate is constant over
all P frames. And the rate of I frame is 6 times of P frame
rate. The λ value was optimized for VSBM, then the same
value was used for GVSBM and ProMesh. Given a fixed rate,
a gain of 0.52 ∼ 0.72 dB is observed for FOREMAN, and
0.26∼ 0.56 dB for BUS. Equivalently, it’s 15∼ 20 percent
bitrate saving on average. Due to the limited space, we only
plot the Y-PSNR curve of FOREMAN in Fig. 5. The motion-
compensation predicted and coded/decoded sequences are
found at [9] posted in .yuv format. We can observe that the
sequences produced by the proposed method are visually
more pleasing.

2011 18th IEEE International Conference on Image Processing

1679

Fig. 3: motion-compensated prediction performance foreman

Fig. 4: motion-compensated prediction performance bus

Fig. 5: Coding results foreman

6. CONCLUSION

In this paper, a new adaptive polynomial motion model is pro-
posed for motion-compensated prediction and hybrid coding.
We described the motion modeling by considering each block
as a mesh cell. Then a connection scheme was adopted to

progressively connect those mesh cells into partial meshes.
Although the proposed ProMesh scheme is a greedy method,
some preliminary experimental results have shown its advan-
tages. It’s evident that a second pass refinement of the motion
vectors of connected control points can further improve the
performance.

Acknowledgements
This work was supported in part by National Natural Science
Foundation of China (No. 61025013, No. 60972085) , and
Sino-Singapore JRP (No. 2010DFA11010).

7. REFERENCES

[1] Y. Nakaya and H. Harashima, “An iterative motion esti-
mation method using triangular patches for motion com-
pensation,” in Visual Communication and Image Process-
ing, 1991, vol. 1605, pp. 546–557.

[2] M. Karczewicz, J. Niewgowski, and P. Haavisto, “Video
coding using motion compensation with polynomial mo-
tion vector fields,” Signal Processing: Image Communi-
cation, vol. 10, pp. 63–91, 1997.

[3] R. Mathew and D. S. Taubman, “Hierarchical and poly-
nomial motion modeling with quad-tree leaf merging,”
in IEEE International Conference on Image Processing.
IEEE, 2006, pp. 1881–1884.

[4] R. Mathew and D. S. Taubman, “Quad-tree motion mod-
eling with leaf merging,” IEEE Trans. Circuits Syst. Video
Technol., vol. 20, no. 10, pp. 1331–1345, 2010.

[5] R. Keys, “Cubic convolution interpolation for digital im-
age processing,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 29, no. 6, pp. 1153–1160, 1981.

[6] G.J. Sullivan and RL Baker, “Efficient quadtree coding
of images and video,” IEEE Trans. Image Process., vol.
3, no. 3, pp. 327–331, 2002.

[7] Yongjun Wu, Fully scalable subband/wavelet video cod-
ing system, Ph.D. thesis, Rensselaer Polytechnic Institute,
2005.

[8] S.T. Hsiang, Highly scalable subband/wavelet image and
video coding, Ph.D. thesis, Rensselaer Polytechnic Insti-
tute, 2002.

[9] “www DOT cipr DOT rpi DOT edu/˜huangh7/icip2011,”
[Online].

2011 18th IEEE International Conference on Image Processing

1680

